Acanthamoeia
Acanthamoeba |
|
Phase contrast
micrograph of an Acanthamoeba polyphaga cyst. |
|
Domain: |
|
Phylum: |
|
Class: |
|
Order: |
|
Family: |
|
Genus: |
Acanthamoeba |
Acanthamoeba castellanii Volkonsky 1931 |
Acanthamoeba is a genus of amoebae that are commonly recovered from soil, fresh water, and other habitats. Acanthamoeba has two evolutive forms,
the metabolically active trophozoite and a dormant, stress-resistant cyst. Trophozoites are small, usually 15 to 25 in length and amoeboid in shape.
In nature, Acanthamoeba species are free-living bacterivores, but in certain situations, they can cause infections
(acanthamebiasis) in humans and other animals.
Distribution
Acanthamoeba spp. are among the most prevalent protozoa found in
the environment. They are distributed worldwide and have been isolated
from soil air, sewage seawater, chlorinated swimming pools domestic tap wate,
bottled water, dental treatment units, hospitals, air-conditioning units,and
contact lens cases. Additionally, they have been isolated from human skin,
nasal cavities, throats, and intestines, as well as plants and other mammals.
Role in
Diseases caused by Acanthamoeba include keratitis and granulomatous amoebic encephalitis (GAE). The latter is often but not always seen
in immunosuppressed patients.[4] GAE is caused by the amoebae entering the body
through an open wound and then spreading to the brain. The combination of
host immune responses and secreted amoebal proteases causes massive brain swelling[6] resulting in death in about 95% of those infected.
Granulomatous
amoebic encephalitis (GAE)
Granulomatous amoebic encephalitis (GAE) is caused by
amoebic infection of the central nervous system (CNS). It is characterized
by neurological symptoms including headache, seizures, and mental-status
abnormalities. These worsen progressively over weeks to months, leading to
death in most patients. Infection is generally associated with underlying
conditions such as immunodeficiency, diabetes, malignancies, malnutrition, systemic lupus erythematosus, and alcoholism. The parasite enters the body through
cuts in the skin or by being inhaled into the upper respiratory tract.[1] The parasite then spreads through the blood into
the CNS. Acanthamoeba crosses the blood–brain barrier by means that are not yet understood. Subsequent
invasion of the connective tissue and induction of pro-inflammatory responses
leads to neuronal damage that can be fatal within days. Pure granulomatous
lesions are rare in patients with AIDS and other related immunodeficiency
states, as the patients do not have adequate numbers of CDve T-cells to mount a
granulomatous response to Acanthamoeba infection in CNS and
other organs and tissues.[4] A perivascular cuffing with amoebae in necrotic
tissue is usual finding in the AIDS and related T-cell immunodeficiency
conditions.
Brain biopsy normally reveals severe oedema and hemorrhagic necrosis. A patient who has contracted this illness usually
displays subacute symptoms, including altered mental status, headaches, fever,
neck stiffness, seizures, and focal neurological signs (such as cranial nerve
palsies and coma), all leading to death within one week to several months.[8] Due to the rarity of this parasite and a lack of
knowledge, no good diagnoses or treatments for Acanthamoeba infection
are now known. Acanthamoeba keratitis cases in the past have
resolved from a therapy consisting of atropine and some other drugs with no
antimicrobial effects. Recent publications show atropine to interfere with the protist's CHRM1 receptor, causing cell death.
Infection usually mimics that of bacterial leptomeningitis,
tuberculous meningitis, or viral encephalitis. The misdiagnosis often leads to
erroneous, ineffective treatment. In the case that the Acanthamoeba is
diagnosed correctly, the current treatments, such as amphotericin B, rifampicin, trimethoprim-sulfamethoxazole, ketoconazole, fluconazole, sulfadiazine, or albendazole, are only tentatively successful. Correct and timely
diagnosis, as well as improved treatment methods and an understanding of the
parasite, are important factors in improving the outcome of infection by Acanthamoeba.
A paper published in 2013 has shown substantial effects of some FDA-approved
drugs with an in vitro kill rate above 90%. These results were in vitro effects,
but as the drugs are already approved, human infections can be targeted after
dose calculations in clinical trials done with these diverse groups of drugs.
Acanthamoebic
keratitis
\
Pathogenic Acanthamoeba as
seen under a light microscope
When present in the eye, Acanthamoeba strains can cause acanthamoebic keratitis, which may lead to corneal ulcers or even blindness. This condition occurs most often among contact lens wearers who do not properly disinfect their lenses, exacerbated by a failure to wash hands prior to handling the lenses. Multipurpose contact lens solutions are largely ineffective against Acanthamoeba, whereas hydrogen peroxide-based solutions have good disinfection characteristics.
The first cure of a corneal infection was achieved in
1985 at Moorfields
Eye Hospital.
In May 2007, Advanced Medical Optics, manufacturer of
Complete Moisture Plus Contact Lens Solution products, issued a voluntary
recall of their Complete Moisture Plus solutions. The fear was that contact
lens wearers who used their solution were at higher risk of acanthamoebic
keratitis than contact lens wearers who used other solutions. The manufacturer
recalled the product after the Centers for Disease Control in the United States found that 21 people had
possibly received an Acanthamoeba infection after using
Complete Moisture Plus in the month prior to diagnosis.
As a bacterial
reservoir
Several species of bacteria that can cause human disease
are also able to infect and replicate within Acanthamoeba species. These
include Legionella pneumophila, Pseudomonas aeruginosa, and some strains of Escherichia coli and Staphylococcus aureus. For some of these bacteria,
replication inside Acanthamoeba has been associated with
enhanced growth in macrophages, and increased resistance to some antibiotics.[1] Furthermore, due to the high prevalence of Acanthamoeba in
the environment, these amoebae have been proposed to serve as an environmental
reservoir for some human pathogens.
Ecology
A. castellanii can be found at high densities in various soil
ecosystems. It preys on bacteria, but also fungi and other protozoa.
This species is able to lyse bacteria and produce a wide
range of enzymes, such as cellulases or chitinases, and probably contributes to the
breakdown of organic matter in soil, contributing to the microbial loop.
Physiology
Role as a model
organism
Because Acanthamoeba does not differ
greatly at the ultrastructural level from a mammalian cell, it is an attractive
model for cell-biology studies; it is important in cellular microbiology,
environmental biology, physiology, cellular interactions, molecular biology,
biochemistry, and evolutionary studies, due to the organisms' versatile roles
in the ecosystem and ability to capture prey by phagocytosis, act as vectors and reservoirs for microbial pathogens,
and to produce serious human infections. In addition, Acanthamoeba has
been used extensively to understand the molecular biology of cell motility and cancer cell dormancy by in-depth exploration of the
process of encystation.
The recently available Acanthamoeba genome sequence revealed several orthologs of genes employed in meiosis of sexual eukaryotes. These genes included Spo11, Mre11, Rad50, Rad51, Rad52, Mnd1, Dmc1, Msh, and Mlh.[19] This finding suggests that Acanthamoeba is
capable of some form of meiosis and may be able to undergo sexual reproduction.
Furthermore, since Acanthamoeba diverged early from the
eukaryotic family tree, these results suggest that meiosis was present early in
eukaryotic evolution.
Owing to its ease and economy of cultivation, the Neff strain of A. castellanii, discovered in a pond in Golden Gate Park in the 1960s, has been effectively used as a classic model organism in the field of cell biology. From just 30 L of simple medium inoculated with A. castellanii, about 1 kg of cells can be obtained after several days of aerated culture at room temperature. Pioneered in the laboratory of Edward D. Korn at the National Institutes of Health (NIH), many important biological molecules have been discovered and their pathways elucidated using the Acanthamoeba model. Thomas Dean Pollard applied this model at the NIH, Harvard Medical School, Johns Hopkins University School of Medicine, and the Salk Institute for Biological Studies to discover and characterize many proteins that are essential for cell motility, not only in amoebae, but also in many other eukaryotic cells, especially those of the human nervous and immune systems, the developing embryo, and cancer cells. Acanthamoeba also has served as a model to study the evolution of certain G-proteins. This unicellular eukaryote expresses few GPCRs over its cell membrane that serve vital role for the microorganism, structural homology bioinformatics tools have been used to show the presence of a homolog of human M1-muscarinic receptor in A. castellanii.[20] Blocking these muscarinic receptors in past studies has proven to be amoebicidal in Acanthamoeba spp] More recently, voltage-gated calcium channels in Acanthamoeba spp. (CavAc) have been reported to have similarities with human voltage-gated calcium channels such as TPC-1 and L-type calcium channels and respond to Ca-channel blockers such as loperamide. This model microbe has been studied to understand complex neurodegenerative states including Alzheimer's disease. Scientists have isolated a neurotransmitter acetylcholine in Acanthamoeba and the enzymatic machinery needed for its synthesis.
Endosymbionts
Acanthamoeba spp. contain diverse bacterial endosymbionts that are similar to human pathogens, so they are
considered to be potential emerging human pathogens. The exact nature of these symbionts and the benefit
they represent for the amoebic host still have to be clarified. These
include Legionella and Legionella-like pathogens.
Giant viruses
The giant viruses Mimivirus, Megavirus,
and Pandoravirus infect Acanthamoeba.
Members of the genus Acanthamoeba are
unusual in serving as hosts for a variety of giant viruses (that have more than 1000 protein-coding genes; for
instance, Pandoravirus, which has about 2500 protein-coding genes
in its genome).
Diversity
Acanthamoeba can be distinguished from other genera of amoebae
based on morphological characteristics. However, differentiating one
species of Acanthamoeba from another by morphology has proven
difficult. Based on 18S DNA sequencing, known Acanthamoeba strains
can be organized into 12 groups, denoted T1-T12. Most disease-causing
isolates belong to type T4.
Below is a list of described species of Acanthamoeba,
with sequence types noted where known. Species that have been identified in
diseased patients are marked with.
·
A. astronyxis (Ray & Hayes 1954) Page
·
A. byersi Qvarnstrom, Nerad & Visvesvara 2013 *
·
A. castellanii Volkonski 1931 * (T4) [A. terricola Pussard 1964]
·
A. comandoni Pussard 1964 (T9)
·
A. culbertsoni (Singh & Das 1970) Griffin 1972 * (T10)
·
A. divionensis Pussard & Pons 1977 (T4)
·
A. echinulata Pussard & Pons 1977
·
A. gigantea Schmöller 1964
·
A. glebae (Dobell 1914)
·
A. gleichenii Volkonsky 1931
·
A. griffini Sawyer 1971 (T3)
·
A. hatchetti Sawyer, Visvesvara & Harke 1977 * (T11)
·
A. healyi Moura, Wallace & Visvesvara 1992 (T12)
·
A. hyalina Dobel & O'connor 1921
·
A. jacobsi Sawyer, Nerad & Visvesvara 1992
·
A. keratitis *
·
A. lenticulata Molet & Ermolieff-braun 1976 (T3)
·
A. lugdunensis Pussard & Pons 1977 * (T4)
·
A. mauritaniensis Pussard & Pons 1977 (T4)
·
A. micheli Corsaro et al. 2015
·
A. palestinensis (Reich 1933) Page 1977 * (T1)
·
A. paradivionensis Pussard & Pons 1977 (T4)
·
A. pearcei Nerad et al. 1995
·
A. polyphaga (Puschkarew 1913) Volkonsky 1931 * (T4)
·
A. pustulosa Pussard & Pons 1977 (T2)
·
A. pyriformis (Olive & Stoianovitch 1969) Spiegel & Shadwick 2016
·
A. quina Pussard
& Pons 1977 *
·
A. rhysodes (Singh 1952) Griffin 1972 * (T4)
·
A. royreba Willaert, Stevens & Tyndall 1978
·
A. sohi Kyung-il
& Shin 2003
·
A. stevensoni Sawyer et al. 1993 (T11)
·
A. triangularis Pussard & Pons 1977 (T4)
·
A. tubiashi Lewis & Sawyer 1979 (T8)
Etymology
From the Greek akantha (spike/thorn), which was added
before "amoeba" (change) to describe this organism as having a
spine-like structure (acanthopodia). This organism is now well known
as Acanthamoeba, an amphizoic, opportunistic, and nonopportunistic
protozoan protist widely distributed in the environment.
Jan Rick Jennings MHA, LFACHE
Senior Consultant
Senior Management Resources, LLC
JanJenningsBlog.Blogspot.com
412.912.0636 Cell
724.733.0509 Office
Marcy 9, 2023
No comments:
Post a Comment